
Nonlinear Krönig-Penney model

WeiDong Li1,2 and A. Smerzi1,3

1Istituto Nazionale per la Fisica della Materia BEC-CRS and Dipartimento di Fisica, Università di Trento, I-38050 Povo, Italy
2Department of Physics and Institute of Theoretical Physics, Shanxi University, Taiyuan 030006, China

3Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
(Received 14 November 2003; published 20 July 2004)

We study the nonlinear Schrödinger equation with a periodic delta-function potential. This realizes a non-
linear Krönig-Penney model, with physical applications in the context of trapped Bose-Einstein condensate
alkaly gases and in the transmission of signals in optical fibers. We find analytical solutions of zero-current
Bloch states. Such wave functions have the same periodicity of the potential, and, in the linear limit, reduce to
the Bloch functions of the Krönig-Penney model. We also find classes of solutions having a periodicity
different from that of the external potential. We calculate the chemical potential of such states and compare it
with the linear excitation spectrum.
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Nonlinearity can deeply modify the Bloch theory of non-
interacting atoms trapped in periodic potentials. Loop struc-
tures, energetic and dynamical instabilities, solitons and
“generalized” Bloch states(i.e., states which do not share the
same periodicity of the lattice), all arise in the context of a
nonlinear Schrödinger(or Gross-Pitaevskii) equation. Appli-
cations span, for instance, the physics of dilute Bose-Einstein
condensed gas trapped in optical lattices[1–9] or the propa-
gation of signals in optical fibers[10].

In this paper we study analytically the nonlinear
Schrödinger equation with an external Krönig-Penney(KP)
potential, given by a periodic array of delta functions. The
linear Schrödinger equation with the same potential has been
solved quite early in the 1930’s, playing a distinguished role
as a model in metal’s theory[11,12].

It is noticeable that also several properties of the nonlin-
ear Schrödinger equation, with the same KP external poten-
tial, can be derived analytically. The most interesting results,
however, are related with the emergence of properties which
do not have a counterpart in the linear case. Stationary solu-
tions of the Gross-Pitaevskii equationsGPEd which do not
reduce to any of the eigenfunctions for a vanishing nonlin-
earity have been studied in Ref.[6] using a tight binding
approximation, and two-wells systems, in Refs.[13–17].

The mean-field model of a quasi-one-dimensional Bose-
Einstein condensate(BEC) trapped in a KP potential is gov-
erned by the following nonlinear Schrödinger(or Gross-
Pitaevskii) equation

mcsxd = F−
"2

2m

]2

] x2 + Vsxd + gucsxdu2Gcsxd, s1d

wherem is the chemical potential andg the nonlinear cou-
pling constant. The KP external potential is given by equi-
spaced delta functions:Vsxd=p on=−`

` dsx−nad, having a lat-
tice constanta. Since the external potential has a step-like
shape, it is useful to rewrite the GPE in hydrodynamic form.
With csxd=Îrsxdexpf−iQsxdg (and in dimensionless units),
we have

S ] r

] x
D2

= 2hr3 + 4sm − Vdr2 − br − 4a2,

Q =E dx
a

r
s2d

with h=gN0s2ma2/"2d, x/a→x, sm ,Vd2ma2/"2→ sm ,Vd,
ar→r and normalizationen

n±1 dx rsxd=1. N0 is the number
of atoms in each well, and the integration constantsa ,b are
fixed by the boundary conditions. In particular,a has a
simple physical meaning, being the current carried by the
order parametercsxd:

J = a, s3d

whereJsa2/"d→J.
Bloch state. We derive a class of stationary solutions of

Eqs. (2) having (i) the same periodicity of the external po-
tential (Bloch states), and (ii ) the linear limit: such states
reduce to the well known solutions of the linear KP model
when h→0. The Bloch theorem assures the possibility to
write the complete set of eigenstates of the linear equation in
the form: csxd=expsiqxdfqsxd, whereq is the quasimomen-
tum of the state andfqsxd is periodic with the lattice constant,
fqsx+ad= fqsxd. It is immediate to extend the Bloch theorem
and show that stationary states having the same periodicity
of the potential exist also in the nonlinear case. However,
there are classes of states which do not have such properties,
see next section.

Bloch nonlinear stationary states of the GPE with the KP
external potential can be written in terms of the Jacobi ellip-
tical functions. With the same class of functions have been
previously studied the exact stationary solutions of the GPE
describing a train of solitons[18], or the stationary solutions
of the GPE in a double square-well potential[13–15]. To the
best of our knowledge, however, the nonlinear Schrödinger
equation with a periodic KP potential has not been studied so
far. We notice that our results with the delta-function poten-
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tial can be generalized(although becomes rather cumber-
some) to a regular array of square wells, as will been shown
elsewhere.

Stationary solutions of the Eqs.(2) are

rsxd =
A

8K2 − F A

8K2 −
128K4a2

As16K4 + AhdGsn2sKx + d,nd, s4d

where

n = −
A

16K4h +
64K2a2

As16K4 + Ahd
h,

b = −
s16K4A + A2hd2 + 2048sAh + 8K4dK6a2

32K4s16AK4 + A2hd
,

m = K2 + F A

8K2 +
64K4a2

As16K4 + AhdGh, s5d

and snsu,nd is the Jacobian elliptic sine function. snsu,nd
has the desiderable property to give, in the linear limit,h
=0, rsxd=sA/8K2dcos2sKx+dd+8sa2/Adsin2sKx+dd, Qsxd
=arctanf8Ka tansKx+dd /Ag, which are the exact solutions
of the linear KP model.

The three parametersA, K, andd are fixed by imposing
the continuity of the order parameter and the Bloch period-
icity, as in the linear case. Because of the nonlinearity, how-
ever, we need one more condition to fix the chemical poten-
tial: the normalization of the density. We therefore obtain
four conditions

r1s0d = r1s1d,

]xr1s0d − ]xr1s1d = 2Pr1s0d,

Q1s0d − sQ1s1d − qtd = 2np,

E
0

1

r1sxddx= 1. s6d

In this paper we consider the special case of zero-current
states, havinga=0 (so thatQ=const). Using the elementary
properties of the Jacobian elliptical function[19] the first two
equations of(6) give

cnsK,nd +
P

2K
snsK,nd = ± 1,

n =
K2 − m

2K2 . s7d

In the linear limit such states are at the top or at the bottom
of the corresponding energy bands(which is not necessarily
true in the nonlinear case when loop-like structures appear in
the excitation spectrum). Indeed, Eq.(7) with h=0 (giving
m=K2) reduces to the well known relation

cosK +
P

2K
sin K = ± 1 s8d

giving the band and the gap widths in the linear KP model
[12].

To solve Eq.(7) we need a further relation between the
chemical potentialm andK, provided by the normalization in
(6). We obtain two conditions associated with the +1 and the
−1 of Eq. (7), respectively:

h

2K
+ 2ESamSK

2
,nD,nD − s1 − ndK = 0 s+ d,

h

2K
+ E„amsw2,nd… − E„amsw1,nd… − s1 − ndK = 0 s− d,

s9d

where n= 1
2s1−m /K2d, w2=Ksnd+K /2 and w1=Ksnd−K /2.

Esu,nd is the incomplete elliptic integral of the second kind
and K is the complete elliptic integral of the second kind.
amsfi ,nd is the amplitude offi.

The coupled Eqs.(7) and(9) can be solved graphically as
shown in Fig. 1. The black lines are solutions of(7), while
the color lines are solutions of(9) (the dashed and the con-

FIG. 1. (Color online) Graphical solution of the system of Eqs.
(7) and (9) for different values of nonlinearity. The allowed values
of the chemical potentialm as a function of momentumK are given
by the intersections between the black and the color lines in the
filled regions.
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tinuum lines correspond to the +,− sign, respectively). The
lines among the intersections between the black and the color
lines (evidenced by the color filled regions), give the values
of sm ,Kd corresponding to the zero-current Bloch states. As
expected, nonlinearity quite modifies the lower energy bands
of the systems, while, for higher bands, differences are re-
duced.

Generalized Bloch states. In the previous section we have
considered Bloch-like solutions, where the condensate wave
functions have the same periodicity of the potential. As al-
ready mentioned, the nonlinear interaction allows for station-
ary solutions which can have, in principle, any integer value
period. In the following, we only consider solutions which
are periodic every two sites:fqsx+2d= fqsxd. Notice that
wave functions withq=0,p are symmetric,csxd=csx+2d,
while are antisymmetric whenq=p /2, csxd=−csx+2d.
Therefore,fq=0sxd= fq=psxd, and the respective chemical po-
tentials are equal.

In the following, we consider as elementary cell two
neighboring wells separated by the delta potential, withrlsxd
and rrsxd being the densities in the “left” and “right” well,
respectively. As in the previous section, we consider only
states with zero currenta=0. The continuity and the period-
icity conditions give

rls0d = rrs2d,

]xrls0d − ]xrrs2d = 2Prls0d,

rls1d = rrs1d,

]xrrs1d − ]xrls1d = 2Prls1d,

E
0

1

rlsxddx+E
1

2

rrsxddx= 2,

K1
2 +

A1

8K1
2h − K2

2 −
A2

8K2
2h = 0. s10d

First, let us consider the solutions which have nodes at the
boundary of the elementary cell

rls0d = rrs2d = 0. s11d

Then we haved1=s2l1+1dKsn1d, d2+2K2=s2l2+1dKsn2d.
Notice that the boundary conditions are equal to those of a
double well, except for the condition on the first derivatives
at the borders of the elementary cell, which givesAs1−n1d
=Bs1−n2d. Combining with the normalization, we arrive at
A=B and K=Q. Notice that this relation excludes the exis-
tence of symmetry broken solutions which are instead ob-
tained in a single double-well potential[14]. In particular,
whenrl,rs1d=0, the only solutions are the Bloch states.

We now consider the casel1= l2=0, which gives

− 2Ksc„K + Ksndddn„K + Ksnd… + P = 0, s12d

A

8K2E
0

1

cn2
„Kx + Ksnd…dx= 1. s13d

In Fig. 2, we present solutions which are symmetric with
respect to the axisx=1. These have a linear limit, which is
simply given by the superposition of two eigenfunctions hav-
ing the same energy but opposite momentum. Obviously, in
the nonlinear case the superposition principle breaks down,
so that the existence of such solutions was not obvious.

Solutions with a node inx=1 can be constructed from the
previous conditions and imposingrlsxd=rrsx+1d, rrsxd
=rlsx−1d.

There is a different class of generalized Bloch states hav-
ing nodes located outside the boundaries of the potential. The
conditions are

A1

8K1
2cn2sd1d =

A2

8K2
2cn2s2K2 + d2d,

K2scs2K2 + d2ddns2K2 + d2d − K1scsd1ddnsd1d = P,

A1

8K1
2cn2sK1 + d1d =

A2

8K2
2cn2sK2 + d2d,

K1scsK1 + d1ddnsK1 + d1d − K2scsK2 + d2ddnsK2 + d2d = P,

K1
2 +

A1

8K1
2h − K2

2 −
A2

8K2
2h = 0,

A1

8K1
2E

0

1

cn2sK1x + d1ddx+
A2

8K2
2E

1

2

cn2sK2x + d2ddx= 2.

s14d

The density profiles of such solutions are shown in the Fig.
3, with different numbers of nodes.

In Fig. 4 we plot the chemical potential of the system as a
function of nonlinearity. The full lines correspond to zero-
current Bloch states, while the dashed and dotted lines cor-
respond to generalized Bloch states. Notice that whenh.
−8, the ground state(q=0, Bloch state) is replaced by the
symmetry broken Bloch state.

FIG. 2. Symmetric generalized Bloch states with no nodes(a),
and with two nodes(b).
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Conclusions. We have studied the nonlinear Krönig-
Penney model. This is given by the nonlinear Schrödinger
equation with a periodic delta-function external potential. We
have found analytical solutions of zero-current states having
the same(Bloch states) or different (“generalized” Bloch
states) periodicity of the potential. Nonlinear Bloch states

reduce, in the linear limit, to the well known eigenfunctions
of the linear Krönig-Penney model. We have studied the
chemical potential dependence of such states and compared
it with the linear Krönig-Penney excitation spectrum.

The authors thank Lev Pitaevskii for several useful dis-
cussions.
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FIG. 3. Symmetry broken generalized Bloch states with three
nodes(a) and with five nodes(b).

FIG. 4. Chemical potential as a function of nonlinearity.
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